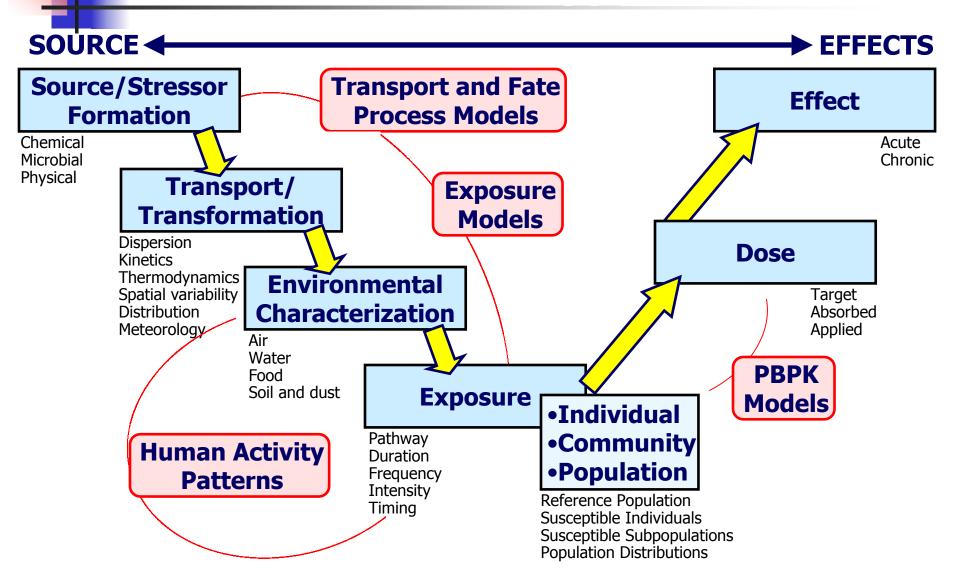

Human Exposure Modeling: Concepts, Methods, and Tools

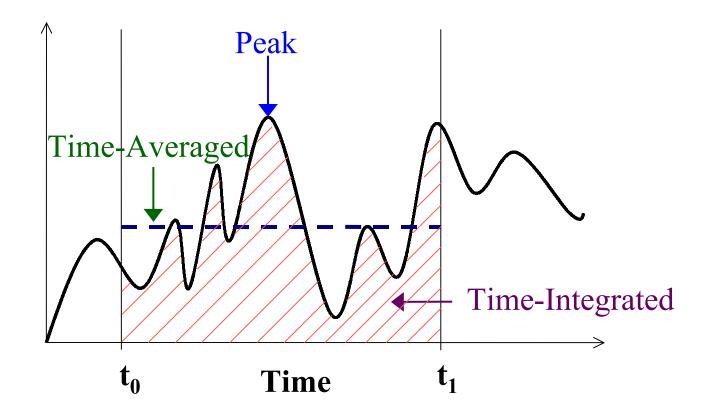

Janet Burke
Stephen Graham
US EPA ORD
National Exposure Research Laboratory

Ted Palma
US EPA OAR
Office of Air Quality Planning and Standards


Outline

- Exposure Modeling Concepts
 - Source-to-effects
 - Scale (national → neighborhood)
 - Type of assessment (screening level → detailed)
 - Metrics
- Exposure Modeling Methods
 - Population exposures → Stochastic/Probabilistic
 - Time series → Human activity patterns
 - Exposure Pathways
- Exposure Modeling Tools
 - Human Activity Database → CHAD
 - Inhalation only → HAPEM, APEX, HEM
 - Multipathway → TRIM, SHEDS

Scale of interest consistent with model



- Complexity of model consistent with type of assessment
 - Screening level → identify pollutants with potential for high exposures
 - Detailed exposure assessment for a pollutant → more accurately assess exposure levels
 - Additional data requirements as complexity of model increases

Exposure/dose metric consistent with health effect of concern

- Statistical models
 - Developed using empirical data from personal monitoring studies
 - Example: Regression equations that explain measured exposures
- Deterministic models
 - Based on known or assumed physical relationships
 - Example: Air quality models
- Stochastic models
 - Input data are distributions, not single value
 - Input distributions characterize variability/uncertainty in the data
 - Use Monte Carlo or other random sampling techniques
 - Produces output distributions (variability/uncertainty)

- EPA Exposure Models
 - Use similar methods:
 - Population distribution of exposures estimated using stochastic modeling
 - Microenvironmental modeling approach
 - Time series approach → Human activity patterns
 - Inhalation pathway primary focus
 - Multipathway pollutants require additional complexity
 - Models available for different objectives:
 - Screening-level assessment → Detailed assessment

- Population exposures
 - US Census data used to generate simulation population that demographically represents population of interest
 - Age
 - Gender
 - Race
 - Employment status
 - Simulate exposure for individuals → combine for estimates of population distribution

4

Exposure Modeling Methods

- Microenvironmental approach (inhalation)
 - Total exposure (E) is the time-weighted sum of exposures from all the different microenvironments in which a person spends time:

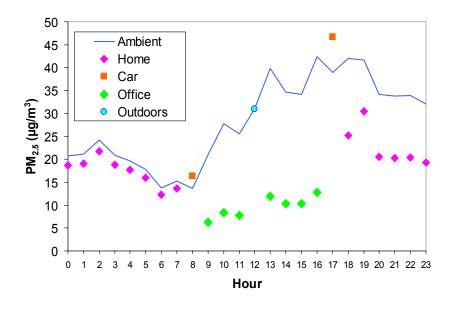
$$E = \sum_{j} E_{j} = \frac{1}{T} \left(\sum_{j} \overline{C}_{j} t_{j} \right)$$

where:

 E_i = exposure while in microenvironment j

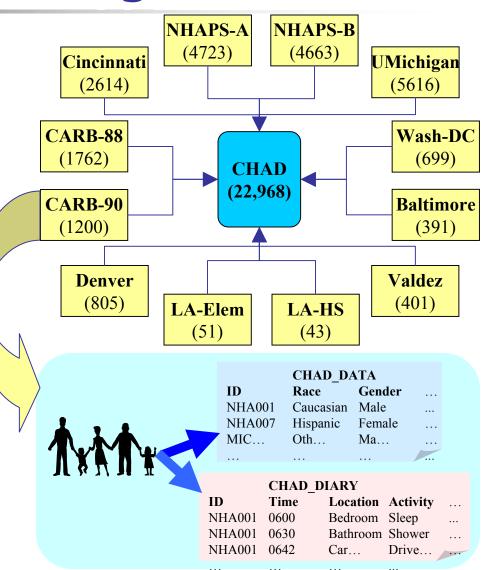
 C_i = average concentration in microenvironment j

 t_i = time spent in microenvironment j

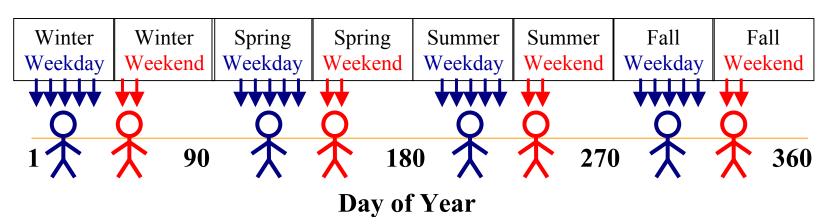

T = the sum of t_j over all j

Time-series approach

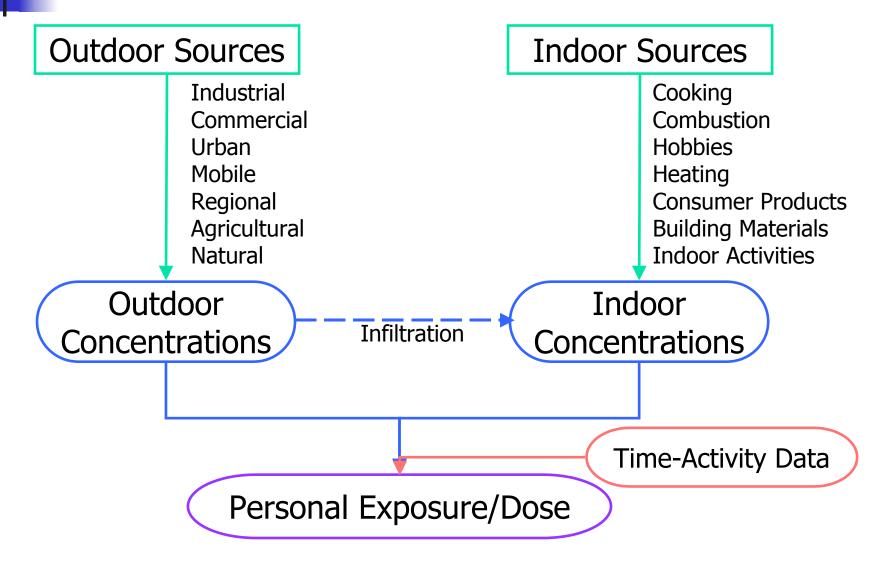
 exposures estimated sequentially through time as individuals encounter various microenvironmental concentrations


allows for time-varying exposure/dose profile of

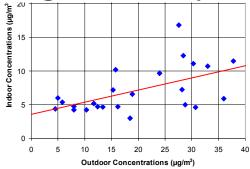
individual

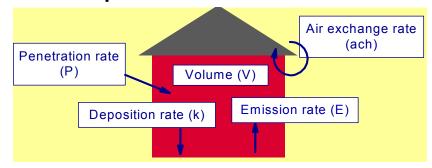


- Human activity data from EPA's Consolidated Human Activity Database (CHAD)
 - Compilation of several human activity surveys
 - Participant's demographic data (age, race, gender)
 - Diary data in standardized format (24-hours, 1 minute to 1 hour)
 - 114 location and 144 activity codes
 - Most surveys single 24-hour diary for participant


- Longitudinal activity diary constructed for each simulated individual
 - Diaries from different people grouped by similar characteristics (age, gender, employed, etc.)
 - Approach impacts intra- and inter-individual variability
 - Same activity diary every day
 - Different activity diary every day
 - Combination: same diary every weekday during a season

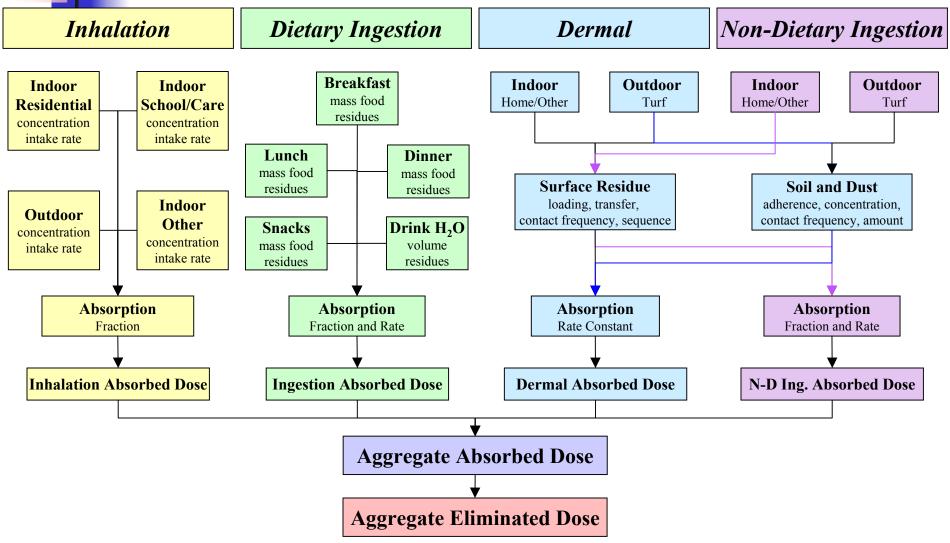
Exposure Modeling Methods **Individual Activity Pattern** ← CHAD's Role **Factors Activities in Microenvironment** Microactivities (time series) **Body METS Estimates Dermal Uptake Parameters** (time series) (mass time⁻¹) **Energy Expenditure** Liquid Intake Caloric Intake Oxygen Consumption **Inhalation Liquid Ingestion Food Ingestion** breathing rate quantity quantity concentration concentration concentration **Additional Data:** Measurement or Modeled


Exposure Pathway: Inhalation



Exposure Pathways: Inhalation

- Microenvironmental concentrations
 - Indoor/outdoor ratio
 - Indoor/outdoor regression equation



Mass balance equation

Exposure Pathways: Multimedia

Overview of Exposure Models

- Simple
 - HEM 2000 (Inhalation with no activity patterns)
 - HAPEM4 (Inhalation with activity patterns)
 - IEM/MPE (Multipathway tool)
- Complex
 - APEX (Inhalation with activity patterns)
 - TRIM.Expo
 - Inhalation, Ingestion
 - SHEDS
 - Inhalation, Ingestion, Dermal

- Human Exposure Model 2000 (HEM 2000)
 - Combines a dispersion model (ISC) with 2000 census data to predict population exposure
 - Does NOT account for human activity pattern
 - Assumes everyone lives at census block centroid for entire exposure period
 - Currently used in Residual Risk assessments as a screening tool

Exposure Models: HAPEM4

- Hazardous Air Pollutant Exposure Model Version 4 (HAPEM4)
 - Census tract resolution; cohort activity data from CHAD; pollutant specific ME factors; can also vary factors by source sector; includes background air quality; adult commuting feature; runs on PC or workstation; documentation available
 - ME factor approach for indoor penetration of outdoor pollutants with additive indoor source term (ADD)
 - Best suited for large scale exposures (national)
 - Chronic exposures

Exposure Models: HAPEM4

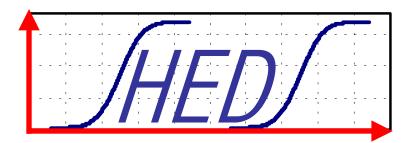
- Model and detailed ME report at: <u>http://www.epa.gov/ttn/atw/nata/natsa3.html</u>
- Detailed Case Study
 - Requested by SAB in NATA review
 - Run HAPEM4 for a small area in Houston
 - 500 meter AQ resolution in central city
 - 88 census tracts (2-71 AQ values per tract)
 - Sensitivity Simulations (approx 10 runs)
 - "Tweak" a selected parameter each run
 - ME (prox,pen), activity, AQ, ADD
 - Benzene and Chromium report late 2003

Exposure Models: APEX

- Air Pollutant Exposure Model (APEX)
 - Models both criteria pollutants and air toxics at urban scale
 - Acute to chronic exposures
 - Microenvironment selection, selection of time period,
 - Ambient monitor data or values from dispersion model
 - Models individuals (instead of cohorts)
 - Sub-census tract resolution; accepts point estimates or distributions for most inputs; includes temperature variation in study area; build lifetime exposure profile
 - Mass balance or ME factor based approach
 - Programmers and users guide; runs on PC

Exposure Models: TRIM

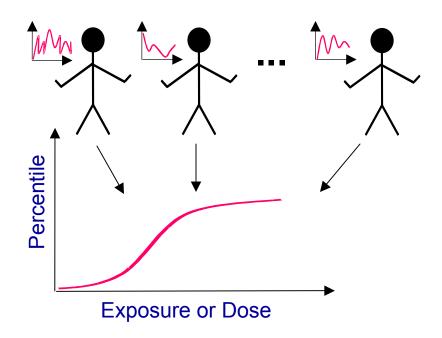
- Total Risk Exposure Model Component (TRIM.Expo)
 - TRIM.Expo Inhalation Component (FY03)
 - incorporates features of APEX and HAPEM4 models
 - TRIM.Expo Ingestion Component (Late FY03)
 - developing algorithms from existing ingestion exposure models
 - creation and testing of linkages between TRIM.FaTE and the TRIM inhalation exposure module (FY03 - FY04)
 - peer review (as appropriate) (FY04)
 - Graphical user interface (FY03)
 - java based to run on PC, Workstation, via Internet

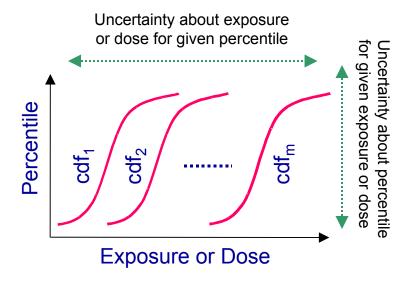

Exposure Models: HAPEM5

- Hazardous Air Pollutant Exposure Model V5 (HAPEM5) - Late 2003
 - Improvements to HAPEM4 based on SAB comments:
 - include ME factor distributions
 - improved treatment of longitudinal activity patterns
 - developing data for indoor air component (ADD)
 - Modify for 2000 Census
 - Children commuting algorithms
 - Comparison with personal monitoring

Exposure Models: SHEDS

- Stochastic Human Exposure and Dose Simulation (SHEDS)
 - Incorporates both variability and uncertainty in predicted exposure distribution using 2-stage Monte Carlo sampling technique
 - Approach used for particulate matter (PM_{2.5}) and for pesticides (chlorpyrifos)
 - Currently developing SHEDS for air toxics that combines features from SHEDS-PM and SHEDS-Pesticides


Exposure Models: SHEDS


Variability

 temporal, spatial, or interindividual differences in the value of an input

Uncertainty

 measure of the incompleteness of knowledge/information

Exposure Models: SHEDS

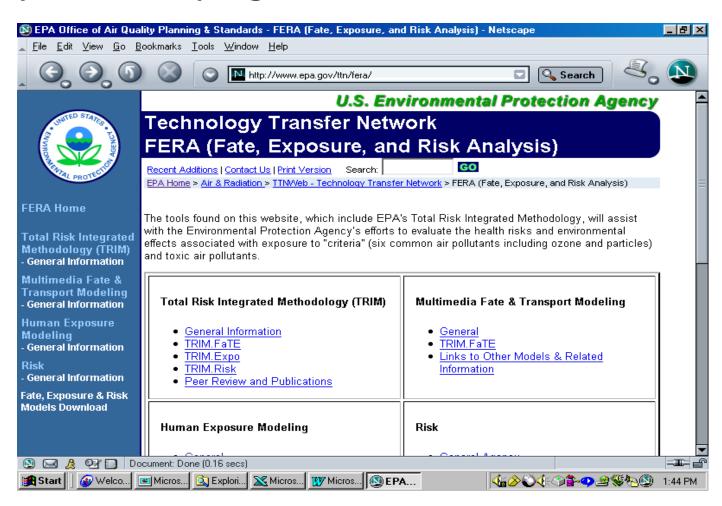
- SHEDS-Air Toxics (ATOX)
 - Strategy for model development
 - Focus on mobile source air toxics initially (benzene)
 - Followed by multimedia pollutants (arsenic)
 - Consider indoor sources (aldehydes)
 - Initiating development with benzene case study
 - Prototype version 1.0 to be completed by FY03
 - Aggregate (multipathway, multimedia) exposure model
 - Longitudinal and cross-sectional options

SHEDS-ATOX: Benzene

- Focus on developing/improving algorithms to estimate exposure to mobile source air toxics
 - Review of current studies to gather data for critical exposure microenvironments and influential factors
 - Commuting Algorithm
 - provides probabilities for work census tract, home census tract and "other" census tract locations.
 - national commuting flow database developed for HAPEM and APEX3 is utilized
 - based on 1994 commuting flow database
 - mapped onto census tracts for Census 2000
 - Establish Consistencies
 - initiate a correlation between CHAD diary travel time and census tract distance in commute
 - consider workers, students, and other classification in longitudinal diary construction

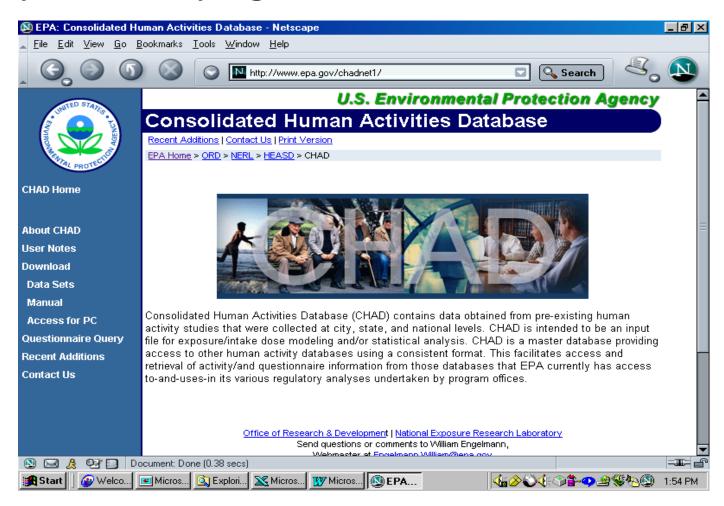
SHEDS-ATOX: Benzene

- In-vehicle exposures
 - time-specific local exposures estimated
 - based on time modified (TOD, DOW, MOY) roadway traffic densities (AADT) and hourly ambient concentrations.
- Refueling exposure
 - seasonal and fuel-type component
 - to consider travel time for individual frequency interval
- Garages
 - both in-garage exposure and infiltration into house (attached garages)

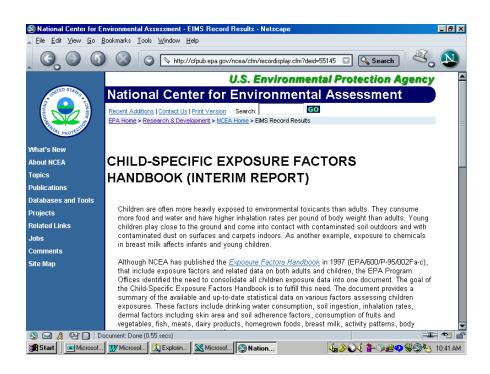


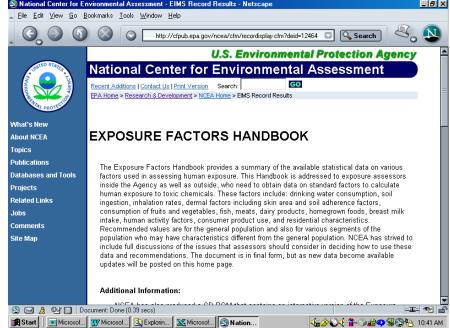
Exposure Models: Comparison

	Spatial Scale	Time Scale	Pathway	Activity Data Used	Inputs
HEM	Local to source	Lifetime (chronic)	Inhalation	No	ISC conc., Census
HAPEM	National → Urban	One year (chronic)	Inhalation	Yes (cohorts)	Census, ME factor
APEX/ TRIM	Urban	One year (acute and chronic)	Inhalation/ Inhalation, Ingestion	Yes (individuals)	Census, Point → Distributions (variability)
SHEDS	Urban	One year (acute and chronic)	Inhalation, Ingestion, Dermal	Yes (individuals)	Census, Point → Distributions (variability, uncertainty)


Modeling Tools: TTN FERA Website

http://www.epa.gov/ttn/fera/


Modeling Tools: CHAD Website


http://www.epa.gov/chadnet1/

- http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=55145
- http://cfpub1.epa.gov/ncea/cfm/recordisplay.cfm?deid=12464

Questions?

Contact info

Janet Burke: burke.janet@epa.gov

919-541-0820

Stephen Graham: graham.stephen@epa.gov

919-541-4344